Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN.

نویسندگان

  • Joel I-Jan Wang
  • Yafang Yang
  • Yu-An Chen
  • Kenji Watanabe
  • Takashi Taniguchi
  • Hugh O H Churchill
  • Pablo Jarillo-Herrero
چکیده

We report high quality graphene and WSe2 devices encapsulated between two hexagonal boron nitride (hBN) flakes using a pick-up method with etched hBN flakes. Picking up prepatterned hBN flakes to be used as a gate dielectric or mask for other 2D materials opens new possibilities for the design and fabrication of 2D heterostructures. In this Letter, we demonstrate this technique in two ways: first, a dual-gated graphene device that is encapsulated between an hBN substrate and prepatterned hBN strips. The conductance of the graphene device shows pronounced Fabry-Pérot oscillations as a function of carrier density, which implies strong quantum confinement and ballistic transport in the locally gated region. Second, we describe a WSe2 device encapsulated in hBN with the top hBN patterned as a mask for the channel of a Hall bar. Ionic liquid selectively tunes the carrier density of the contact region of the device, while the hBN mask allows independent tunability of the contact region for low contact resistance. Hall mobility larger than 600 cm(2)/(V·s) for few-layer p-type WSe2 at 220 K is measured, the highest mobility of a thin WSe2 device reported to date. The observations of ballistic transport in graphene and high mobility in WSe2 confirm pick-up of prepatterned hBN as a versatile technique to fabricate ultraclean devices with high quality contact.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride.

Flexible graphene field-effect transistors (GFETs) are fabricated with graphene channels fully encapsulated in hexagonal boron nitride (hBN) implementing a self-aligned fabrication scheme. Flexible GFETs fabricated with channel lengths of 2 μm demonstrate exceptional room-temperature carrier mobility (μFE = 10 000 cm(2) V(-1) s(-1)), strong current saturation characteristics (peak output resist...

متن کامل

Electronic properties of graphene encapsulated with different two-dimensional atomic crystals.

Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micrometer-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report on our search for alternative substrates. The devices fabricated by encapsulating graphene with molybdenum or tungsten disulfides and hBN are f...

متن کامل

Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures.

Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band ...

متن کامل

Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method

We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the f...

متن کامل

Electronic transport in heterostructures of chemical vapor deposited graphene and hexagonal boron nitride.

CVD graphene devices on stacked CVD hexagonal boron nitride (hBN) are demonstrated using a novel low-contamination transfer method, and their electrical performance is systematically compared to devices on SiO(2). An order of magnitude improvement in mobility, sheet resistivity, current density, and sustained power is reported when the oxide substrate is covered with five-layer CVD hBN.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2015